

Green Mobility Changing the World 19 - 20 June 2014

Bitec Bangna, Bangkok

Green Mobility for Sustainable Road Transportation - Efforts and Challenges in JARI -Shigeru Handa Managing Director Japan Automobile Research Institute

- Countermeasures for CO2 Reduction toward Green Mobility
- Next-Generation Vehicles in Japan and Key Issues
- Platooning Technologies and its Concept
- Automated Driving

June²⁰¹⁴

BITEC

Bangkok

Countermeasures for CO2 Reduction toward Green Mobility

1. Adopting fuel efficiency standards, Reducing vehicle weight, Next-generation vehicles, Promoting replacement

June²⁰¹⁴ BITEC • Bangkok

19-20

Next-generation Vehicles in Japan and Key Issues

Next Generation Vehicles		Registration number (March. 2014)	Key Issues	
xEVs	BEV	Battery Electric Vehicle	42,000	Battery related issues
	PHEV	Plug-in Hybrid Electric Vehicle	55,000	(safety, performance, cost, charging station)
	FCEV	Fuel Cell Electric Vehicle	will be on sale at 2015	Hydrogen related issues (safety, quality, cost, hard/soft infrastructure)
	HEV	Hybrid Electric Vehicle	3,700,000	-
CD		Clean Diesel	75,000	Engine technology
NGV		Natural Gas Vehicle	41,000	-

: promotion required

5

June²⁰¹⁴ BITEC • Bangkok

□ JARI's Role related to xEVs Key Issues

Battery related issues

(safety, performance, cost, charging stations)

Hydrogen related issues

(safety, quality, cost, infrastructure)

Prepare standards for social receptivity requirements, production and inspection requirements

Propose government research projects in cooperation with stake holders in industries, public universities, institutes and academia

JARI has been contributing to xEVs's dissemination through standardization activities based on research on the key issues

Volvo Truck

6

19-20 June²⁰¹⁴ BITEC • Bangkok

□ JARI's Role in the Battery R&D Project

June²⁰¹⁴ BITEC • Bangkok

-20

Battery R&D for xEVs and its Targets

	2006	Improved (2010)	Advanced (2015)	Innovative (2030 and later)
Performance	1	1	1.5	7
Cost	1	1/2	1/7	1/40
Framework	Industry	Industry	Industry Government Academia	Academia

Source: METI Battery R&D Roadmap, 2006 (METI: Ministry of Economy, Trade and Industry)

8

DI

JARI's Research - related to BEVs and Batteries for Standardization

- Performance tests
 - Electricity consumption test method Extraction of battery durability test cycle, etc.

✓Real world durability test

Four wheel chassis dynamometer

Field test of EVs and **PHEVs**

✓Overcharge, over-discharge, short circuit, nail penetration, crush, environmental, bonfire test, etc.

19-20

June²⁰¹⁴

BITEC • Bangkok

Charge and discharge

Environmenpenetration tal chamber and crush

SCANIA

Nail

JARI's Research - Contribution to Standardization Areas of FCEVs

9-20

June²⁰¹⁴

19-20 June²⁰¹⁴ BITEC • Bangkok

JARI's Research related to Standardization Areas of FCEVs

FCEVs Promotion Scenario in Japan

19-20 June²⁰¹⁴

9-20 June²⁰¹⁴ BITEC • Bangkok

13

Hydrogen (H2) Station Infrastructure Promotion Strategy

Source: FCV-H2 Station promotion project

Automation Level Concept

Longitudinal Control Short Range Sensor V2V Communication

Obstacle Collision Avoidance Long range Sensor

Lateral Control Lane recognition

LV(Leading Vehicle)

19-20 June²⁰¹⁴

BITEC • Bangkok

			Concept X	Concept Y	Concept Z			
	LV	Automation Level	Driver Assistance	Driver Assistance	Highly Automated			
		Lateral	without	Lane tracking	Lane tracking			
		Longitudinal	CC/ACC / Pre-crash					
	FV	Automation Level	Driver Assistance Highly Automated		Fully Automated			
		Lateral	without	Lane tracking	Lane tracking			
	Longitudinal		CACC	\leftarrow				
Co-org	Co-organized by Supported by		Platinum s	ponsor Gold sponsor	Silver sponsor			
C	THAIL AUTOM INSTI สถาบันย		Bangkok Go Furthe	The Chemical Corport				
🙈 R	eed Tra	Idex TEBA EABC	6ntinental TCEB	Volvo Trucks				

19-20 June²⁰¹⁴ BITEC • Bangkok

□ Platooning Technology: 5 min. 30 sec.

Concept X, Y and Z: 4 min.

19-20 June²⁰¹⁴

Estimate of CO2 Emission Reduction by Simulation

- Roadway: Tomei Expressway, Tokyo area, about 100 km
- Traffic flow: light vehicles 69%, heavy vehicles 31%
- Platoon rate: 40% of heavy trucks

Speed	Gap	Micro effect (less aero drag)	Macro effect (capacity increase)	Total
80 km/h	10 m	2.0 %	0.1 %	2.1 %
	4 m	3.5 %	1.3 %	4.8 %

June²⁰¹⁴

□ Capacity Increase by Space Reallocation

Before Platooning:

19-20 June²⁰¹⁴

Automatic Pilot of Airplanes

• Annual flight time of a pilot of international flights: 800 - 900 hours and manual flying by a pilot: around 3 hours (Flight Daily News, 9 Sep. 2009)

• Role of a pilot: Supervisory control (Inagaki 2014)

June²⁰¹⁴

BITEC

Bangkok

19

Authority and Responsibilities

• Airplane

A pilot takes the final responsibility for the safety of aeronautical systems. Therefore, a pilot has to gain control (have the final say).

(Billings 1997; Inagaki 2012)

June²⁰

BITEC

Bangkok

• Automobile

Driving is an absolutely driver-centered activity.

(Inagaki 2014)

Agreements convention on road traffic in Vienna, 1949 and 1968
 A driver has to control the vehicle at all times...etc.

5 Levels of Vehicle Automation, NHTSA, US

- No-Automation (Level 0): The driver is in complete and sole control of the primary vehicle controls at all times.
- Function-specific Automation (Level 1): Automation at this level involves one or more specific control functions.
- **Combined Function Automation (Level 2):** This level involves automation of at least two primary control functions designed to work in unison to relieve the driver of control of those functions.
- Limited Self-Driving Automation (Level 3): Vehicles at this level of automation enable the driver to cede full control of all safety-critical functions under certain traffic or environmental conditions
- Full Self-Driving Automation (Level 4): The vehicle is designed to perform all safety-critical driving functions and monitor roadway conditions.

NHTSA: National Highway Traffic and Safety Administration

June²⁰¹

BITEC

Bangkok

21

June²⁰¹⁴ BITEC • Bangkok

<u>19-20</u>

□ Applicable Scope of Automated Driving

NHTSA level	Safety in careless driving	Safety in drowsy driving	Driving load reduction	Energy saving	Traffic flow improve -ment	Comfort enhance -ment	
0: No-Automation							
1: Function-specific Auto.	++	+	+				
2: Combined Function Auto.	++	+	+				
3: Limited Self-Driving Auto.	++	++	++	+	+	+	
4: Full Self-Driving Auto.	++	++	++	++	++	++	2

Volvo Trucks

Issues for Practical Application of Automated Driving Technologies

Establish safety and reliability

 Develop and demonstrate "Performance of perception and judgment" to be the same, or more than that of a driver

June²⁰¹

BITEC

Bangkok

✓ Develop and demonstrate "Reliability" to be the same, or more than that of a driver

Acquire social receptivity

✓Make clear the scope of responsibility between a driver and a system

✓ Build consensus on safety among people

• Ensure compliance

✓ Study the relationship with "Agreements in Geneva and/or Vienna", "Road Traffic Act (Japan)" and "Safety Standard (Japan)"

"Automated Driving System" Nominated in SIP

• A new cross-ministry Strategic Innovation Promotion (SIP) program in JFY2014 was launched by the Japanese government.

June²⁰¹

BITEC

Bangkok

- 10 candidate technology fields including "Automated driving system for dodging accidents and minimizing traffic congestion" were selected.
- SIP budget in JFY 2014 is 51.7 billion Japanese yen (517 million US dollar).

<Note> This is a summary from translations of a Nikkei Newspaper article -September 12, 2013 and a Japanese government cabinet office website article - September 13, 2013

June²⁰¹⁴ BITEC • Bangkok

19-20

METI: Ministry of Economy, Trade and Industry

MLIT: Ministry of Land, Infrastructure, Transport and Tourism

MOE: Ministry of the Environment

25

19-20 June²⁰¹⁴ BITEC • Bangkok

- Countermeasures for CO2 Reduction toward Green Mobility
- Next-Generation Vehicles in Japan and Key Issues
- Platooning Technologies and its Concept
- Automated Driving

June²⁰¹⁴

THANK YOU

xEVs: Takayuki Sakai, tsakai@jari.or.jp Automated Driving: Mitsuo Yonezawa, myone@jari.or.jp